Protein Hydration & Protein Motion

Nathaniel Nucci
with
Max Pometun
Kathy Valentine

Nucci et al. (2011) NSMB 18, 245
Nucci et al. (2011) JACS 133, 12326

© A. J. Wand 2012
Why study protein hydration?

- The entropy of water is the primary stabilizing force for proteins
- Protein-ligand interactions often require desolvation (“dry” interfaces)
- Protein-ligand interactions often have mediating waters (“wet” interfaces)
- The potential coupling of protein dynamics and solvent dynamics
- etc.

How can we study protein hydration?

- Computation: Dominant but somewhat suspect; few reference standards
- Crystallography: Dominant but dynamically limited & deceptive
- Dielectric relaxation
- Infrared spectroscopy
- Terahertz spectroscopy
- Neutron scattering
- Fluorescence/IR: Site-resolved probes but laborious and limited
- DNP: Site-resolved but laborious; highly complementary to NMR
- Magnetic relaxation dispersion: average property, sometimes resolved
- NMR: powerful (site resolved, comprehensive) but sample limited

© A. J. Wand 2012
A crystallographic view: A cautionary note

Same crystal form; Same mother liquor; At RT; identical protein structure; different solvation waters (and incomplete)

© A. J. Wand 2012
Wüthrich and coworkers (Science, 1991) proposed using NOE/ROE ratios to characterize hydration water location & dynamics

\[
\text{NOE and ROE } \propto \frac{1}{r_{HH}^6}
\]

- **NOE limited** by short residence times of hydration water
- The approach **defeated** by hydrogen exchange artifacts
- Criticized for bulk water averaging artifacts (Halle, 2003)
- Largely **abandoned** except for “structural water”

So we need a different sample with slower water, no bulk water averaging and suppressed hydrogen exchange.

This implicitly assumes that slowing the water doesn’t qualitatively change the nature of the distribution.
NMR spectroscopy of encapsulated protein dissolved in low viscosity fluids

- Protein pI & surfactant charge dependent
- Water loading dependent \([\text{water}] / [\text{surfactant}] \approx 10-20\)
- Salt dependent
- Equilibrium often achieved in minutes
- Preparations often stable for months/years
- Protein loading approaches 0.25 mM

Wand et al. (1998) PNAS 95, 15303

© A. J. Wand 2012
Careful encapsulation search leads to high fidelity maintenance of structure …

© A. J. Wand 2012
The Structure of Encapsulated Ubiquitin is Statistically Indistinguishable from the Free Solution Structure

Demonstrated:

• Native structure is maintained
• NOE- and J-based restraints used
• High resolution structure (0.25 Å rmsd backbone)
• RDCs not employed here but are available - see Valentine et al. (2006) JACS 128, 15930

Issue #1: Overcoming water dynamics

Confinement slows water dynamics ~ two orders of magnitude:
- IR
- Scattering
- Simulation
- etc.

Park et al. (2008) JPCB 112, 5279

© A. J. Wand 2012
Issue #2: hydrogen exchange artifacts

\[N - H + H_2O \overset{OH^-}{\rightleftharpoons} N - H + HOH \]

In bulk, hydrogen exchange corrupts NOE/ROE intensities. In the RM, HX chemistry is quenched by > 100-fold (@ same pH). Due to two factors: catalyst (OH⁻) delivered by reverse micelle exchange (µs) & slowed water dynamics.

Nucci et al. (2011) NSMB 18, 245
Issue #3: water averaging artifacts

Rendered moot since >99% of the “long distance” water is now gone!

(and no NOE interactions with the pentane/propane were found anyway)
Protein containing reverse micelles resist taking up excess water...

...suggesting that the native hydration shell is maintained i.e. thermodynamically dominant

\[\tau_m \propto (aW_0 + b)^3 \]

\[W_0 = [H_2O]/[\text{surfactant}] \]

Nucci et al. (2011) JBNMR 50, 421
Dozens of true protein amide hydrogen short distance interactions with water are revealed.

Ubiquitin in AOT/pentane, pH 5
Slices at the water plane (40 ms NOE/ROE mix time: linear regime)
Protein perdeuterated at carbon to eliminate $H\alpha$ under the water resonance

Nucci et al. (2011) NSMB 18, 245

© A. J. Wand 2012
Distinguishing rigid and mobile “bound” hydration water by solution NMR

\[\sigma_{\text{ROE}} = K \left(2J(0) + 3J(\omega) \right) \]
\[\sigma_{\text{NOE}} = K \left[6J(2\omega) - J(0) \right] \]

\[J(\omega) = \frac{\langle O \rangle^2}{r^3} \frac{\tau_m}{1 + \omega^2 \tau_m^2} + \left(1 - \frac{\langle O \rangle^2}{r^3} \right) \frac{\tau}{1 + \omega^2 \tau^2} \]

\[\frac{1}{\tau} = \frac{1}{\tau_m} + \frac{1}{\tau_e} \]

ROE: Bothner-By et al. (1984) 106, 811

• Fast tumbling limit: \(\tau_m \omega \ll 1 \), \(\sigma_{\text{NOE}} / \sigma_{\text{ROE}} \rightarrow 1 \)
• Slow tumbling limit: \(\tau_m \omega \gg 1 \), \(\sigma_{\text{NOE}} / \sigma_{\text{ROE}} \rightarrow -0.5 \)
• The ROE suppresses multiple dipole-dipole transfers (spin diffusion)
• Angular disorder (O) is convolved with distance variation (r)
Hydration water dynamics correlates with the binding interface

- Hydration surface constructed using 15N- & 13C-resolved NOEs
- Rigid (blue-purple) bound water has low entropy (S)
- Dynamic (orange-red) bound water has higher entropy (S)
- High S water associated with surface not binding proteins
- Low S water associated with surface binding proteins
- Suggests the hydrophobic effect has been maximized by evolution for the protein-protein interface!

Nucci et al. (2011) JACS 133, 12326
Putting it together: Solvent slaving & what it “predicts”

- Proteins have various classes of motion
- These classes differ in the degree to which they are dependent on solvent motions

Class I: slaved to the α motions of solvent, which are long-range collective motions. In the absence of alpha motions in the solvent, these protein motions are impossible.

Class II: slaved to the β motions of the hydration layer. Changes in the mobility of the hydration layer should alter the rate/magnitude of these protein motions.

Class III: non-slaved motions. These internal motions of the protein are independent of solvent. These were added relatively recently as a concession.

- There is virtually no site-resolved experimental support for this model but it is widely accepted

Dynamics as a Proxy for Entropy Parametric Relationship Between S and O^2

Order parameter:

- $O^2 = 1$ = fixed orientation
- $O^2 = 0$ = no preferred orientation

The simple harmonic oscillator

Li et al. (1996) Prot. Sci. 5, 2647
NMR relaxation reports on protein dynamics

\[T_1 = \frac{\gamma_2}{2} \Delta \sigma_2 \]

\[J(\omega) = \frac{2}{5} \left[\frac{O^2 \tau_m}{1 + \omega^2 \tau_m^2} + \frac{(1 - O^2) \tau}{1 + \omega^2 \tau^2} \right] \]

\[\frac{1}{T_1} = \left(\frac{\hbar^2 \gamma_H^2 \gamma_C^2}{4 r_{CH}^6} \right) (J(\omega_H - \omega_C) + 3J(\omega_C) + 6J(\omega_H + \omega_C)) + \frac{\omega_C^2 \Delta \sigma^2}{3} J(\omega_C) \]

15N: Farrow et al. (1994) Biochem. 33, 5984
2H: Munhandiram et al. (1995) JACS. 117, 11536
13C: Ishima & Torchia (2001) JACS 123, 6164

© A. J. Wand 2012
Side chain dynamics represented by methyl groups.

Methyl groups
– well-distributed
– numerous
– 2H simple relaxation

$2\text{-}3$ ps $< 30 \text{ – } 80$ ps $<< 8.5$ ns

τ_{rot}, τ_{e}

- 2H relaxation reports on C-C bond vector (sym axis)

- $O_{\text{axis}}^2 = O^2/0.111$ (geometry & time scale separation)

© A. J. Wand 2012
Methyl groups have a wide range of O^{2}_{axis} values.

Little correlation with depth of burial, amino acid type, solvent exposure, secondary structure, B-factors and other primitive correlates.

© A. J. Wand 2012
Encapsulation generally makes the backbone more rigid.

\[O_{NH}^2 \]

Increasing rigidity

\[\eta_{RM}^{H_2O} \sim 50 \cdot \eta_{bulk}^{H_2O} \]

Residue #
Encapsulation generally makes the backbone motion slower.
Encapsulation causes only subtle restriction of side chain motion

\[\eta_{RM} \sim 50 \cdot \eta_{bulk} \]

RM \(O_{axis}^2 \)
error bars from true replicates

© A. J. Wand 2012
Are the backbone dynamics correlated with hydration water dynamics in the RM? **NO**
Are the methyl side chain dynamics correlated with hydration water dynamics in the RM? **NO**

![Graph showing the relationship between O$_2$ axis in AOT RM and NOE/ROE with Rigid Hydration and Dynamic Hydration]

Only surface CH$_3$ shown
Conclusions

• Encapsulation effectively eliminates the artifacts that have historically hindered detection of protein-water interactions by solution NMR methods

• Protein hydration shows heterogeneous dynamics; no obvious correlation with surface character; clustering of motional timescale apparent

• Patches of slow (long residence time) hydration water seem correlated with binding surface (one example!); suggests evolution has used the entropy of water to maximize binding free energy and to provide specificity

• Fast protein dynamics seem not slaved to solvent as predicted (one example!)
NMR Spectroscopy of Encapsulated Proteins in Low Viscosity Fluids

Recent Contributors

Nathaniel Nucci
Lia Athananasoula
Sabrina Bedard
Igor Dodveski
John Gledhill
Bryan Marques
Vonni Moorman
Max Pometun
Adam Seitz
Nimi Sidhu
Kathy Valentine

Funding

Mathers, NSF & NIH

Disclosure: Ron Peterson, Brian Lefebvre & Josh Wand are Members of Daedalus Innovations, LLC

© A. J. Wand 2012
This slide intentionally left blank